Як знайти площу п'ятикутника

П`ятикутник - це багатокутник, у якого п`ять кутів. П`ятикутники бувають правильними, неправильними, опуклими, увігнутими, зірчастими. Не існує простого і єдиного способу обчислення площі п`ятикутників, але легко знайти площу правильного п`ятикутника. Ця стаття описує два основних способи обчислення площі правильного п`ятикутника.




Частина 1 з 3: Основи

  1. 1

    Правильні і неправильні п`ятикутники. Правильний п`ятикутник - це п`ятикутник, у якого всі сторони рівними в іншому випадку п`ятикутник називається неправильним.
    • Правильний п`ятикутник завжди буде опуклим (див. Нижче). Неправильний п`ятикутник може бути і опуклим, і увігнутим.

  2. 2

    Опуклі і увігнуті п`ятикутники. Опуклий п`ятикутник не має вершин, спрямованих всередину фігури (іншими словами, не має внутрішніх кутів більше 180 градусів). Увігнутий п`ятикутник має вершину, спрямовану всередину фігури (іншими словами, має внутрішній кут більше 180 градусів).

  3. 3

    Периметр п`ятикутника. Як і у випадку інших геометричних фігур, знайти периметр п`ятикутника легко: просто складіть довжини всіх п`яти сторін.

  4. 4

    Апофема правильного п`ятикутника. Апофема - відрізок, що з`єднує центр п`ятикутника і середину будь-який з його сторін.

  5. 5

    Основні тригонометричні функції. Їх треба знати, оскільки площа п`ятикутника можна знайти за допомогою його розбиття на прямокутні трикутники. Існують три основні тригонометричних функції: sin кута = протилежний катет / гіпотенуза- cos кута = прилежащий катет / гіпотенуза- tg кута = протилежний катет / прилежащий катет.

Частина 2 з 3: Обчислення площі п`ятикутника: геометрія

  1. 1

    Розбийте п`ятикутник на п`ять рівнобедрених трикутників. Потім у кожному трикутнику опустіть висоту (з центру п`ятикутника). Ви отримаєте десять прямокутних трикутників. Запам`ятайте: кожен кут п`ятикутника дорівнює 108 градусам.
    • Наприклад, знайдіть площа правильного п`ятикутника зі стороною 6 см. Для початку розбийте його так, як показано на малюнку.

  2. 2

    Знайдіть сторони рівнобедреного трикутника. Для цього розгляньте один з прямокутних трикутників.
    • У наведеному прикладі сторона п`ятикутника дорівнює 6 см. Отже, один катет прямокутного трикутника дорівнює 3 см (оскільки висота ділить сторону п`ятикутника навпіл). За допомогою тригонометричних функцій можна обчислити інші сторони. Обчислення показані на малюнку.

  3. 3

    Обчисліть площу прямокутного трикутника. Площа прямокутного трикутника обчислюється за простою формулою: А1 = ab / 2.
    • У наведеному вище прикладі підставте знайдені значення в цю формулу. Обчислення показані на малюнку.


  4. 4

    Знайдіть площу п`ятикутника. Нагадаємо, що ви розбили п`ятикутник на десять прямокутних трикутників. Таким чином, загальна площа п`ятикутника в десять разів більше площі одного прямокутного трикутника: А = 10 * А1.
    • У наведеному вище прикладі площа п`ятикутника обчислюється таким чином: А = 10 * А1 = 10 * 3,0321 = 30,3210.

Частина 3 з 3: Обчислення площі п`ятикутника: формула

  1. 1

    Формула для обчислення площі будь-якого правильного багатокутника: A = Pa / 2, де Р - периметр багатокутника, а - апофема багатокутника.
    • Наприклад, дано правильний п`ятикутник зі стороною 6 см. Знайдіть його площу.

  2. 2

    Знайдіть периметр п`ятикутника. Для цього складіть довжини всіх його сторін.
    • У наведеному вище прикладі: Р = 6 + 6 + 6 + 6 + 6 = 30.

  3. 3

    Знайдіть апофему п`ятикутника. Якщо ви знаєте сторону багатокутника, то його апофема обчислюється за формулою: а = s / 2tan (180 / n), де s - сторона багатокутника, n - кількість сторін багатокутника.
    • У наведеному вище прикладі обчислення апофеми показано на малюнку.

  4. 4

    Обчисліть площу п`ятикутника. Для цього використовуйте основну формулу для обчислення площі п`ятикутника.
    • У наведеному вище прикладі: А = (30 * 2,0214) / 2 = 30,3210.

Поради

  • Якщо можливо, обчисліть площа п`ятикутника, використовуючи обидва описаних методу. Потім порівняйте результати, щоб підтвердити правильність відповіді.